
Follow the workflow



Table of contents

Welcome 4

I Use git and GitHub 5

1 Cloning the repository 7

2 Pulling remote changes 9

3 Creating our own branch 11

4 Adding changes to our branch 12

5 Pushing our changes 14

6 Creating a pull request 15

7 Solving conflicts 19

II Create an R package 21

8 Project structure 23

9 Virtual environments with renv 25

10 Writing code 28
10.0.1 Create your functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
10.0.2 Run your functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

11 Function documentation 31

12 Package data 34

13 Writing tests 37

14 R CMD Check 40

2



15 Writing articles 43

16 Environment variables and secrets 47

17 R code style and formatting 49

18 Reading large files 53

19 Automatic checks on Pull Requests 56

3



Welcome

Exclamation Important

This book is a work in progress. Many parts are more personally addressed to the project
I initially wrote this for. I will gradually try to adapt it to the general public so it doesn’t
contain out of context mentions.

This book was born as an early attempt to introduce researchers to best coding practices. Many
researchers only write code for themselves, and thus don’t feel the urge to cleanly organise and
share it. The book has two main aims:

• Work with code collaboratively: use git and GitHub.
• Make your code easily accessible for other programmers: create an R package.

When I started, I didn’t know much about R myself, so writing this was also helpful to me.
It started as a rather short introduction (and I still think it is to some extent), but it keeps
growing while I learn about new tools that I find useful for our workflow.

I don’t expect you to read everything linearly. You’re encouraged to gradually develop your
own package or contribute to an existing one and come back here when you need some help or
a refresher. You can also use the search bar at the top left to look for specific keywords and
find the relevant parts in the book. Reading code from other experienced programmers can also
get you quite far without diving too deep into passively reading texts like this. If that sounds
appealing, I recommend checking the source code for R packages from tidyverse or rOpenSci.

This book is prepared with Quarto, but I also used git and R! The book is open source
and stored in GitHub. If you find any mistake or some part that can be improved, you can
contribute! Look for the Edit this page button, which will take you to GitHub to easily suggest
changes.
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Part I

Use git and GitHub
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This is the git and GitHub part.
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1 Cloning the repository

To get started with Git, you need your operating system to recognize Git commands. We will
assume you are on Windows, so you will have to install Git from here. If you do not know
whether it is the 32 or 64 bits version, you most likely need the 64 bit one. You should now have
something called ‘Git Bash’ installed, which is like a command line tool (similar to Windows
CMD). You can open Git Bash inside a specific directory (this is just a technical name for
folders and I will use it from now on) by right-clicking your desired directory in the file explorer
and selecting ‘Open Git Bash here’. However, I would recommend you to learn some basic
commands to navigate from the command line itself (from now on, writing <some-text>
is not part of the command, I just use it as a placeholder for what you need to write
there):

• Print your current directory:

pwd

This is just useful so you can see where you are right now.

• List files from your current directory:

ls

Suppose you do not know the exact path to follow but you know it is inside a certain
subdirectory from the one you are in right now. Listing everything in the current directory
with ls is a useful way to spot which subdirectory you are looking for, so that you can
then navigate inside it with cd.

• Move to another directory relative to the one you are in right now:

cd <relative-path-where-to-move>

You can use ls and cd <relative-path> repeatedly until you are in the directory where you
want to place a subdirectory containing the repository. Again, you can double check that using
pwd.

We assume here that the repository you want to contribute to already exists. You can go to its
page on GitHub and copy the URL as seen in the image below:
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The git terminology used for ‘downloading’ a repository to our local file system is ‘cloning’. We
can clone a remote repository (in this case from GitHub) using the following command:

git clone <url-you-copied>

This is called cloning via HTTPS. A browser should open and ask you to introduce your GitHub
credentials. There are other ways of cloning like SSH, but that is out of the scope of this
guide.
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2 Pulling remote changes

Now a new directory should have been created with the content of the repository in your local
file system. From now on we will see the basic git commands that you would need in daily
usage. We assume you are inside the repository. We explain them with an example.

Suppose you want to start contributing to this repository. A good practice (and one that
we will enforce to use) is to make your own code changes in a ‘different place’ than the ones
you currently see in the repository. The things you see now are in what it is called the ‘main
branch’, and you will make your code changes in a ‘new branch’, which will start with the
same content as the main one, but will then evolve with different changes. If you have not
done anything yet, you should be in the main branch (maybe it is called ‘main’ or ‘master’,
these are just conventions, but I will assume it is called ‘main’). You can use the command
git status to check this (do not mind that my terminal looks different in the screenshots,
you can use the same commands in Git Bash):

Your local version of a repository does not need to match the remote version (the one we store
in GitHub in this case), but before you start your work on a new branch, you should keep your
main branch up to date in case someone added new code in the GitHub repository since the
last time you checked. We get any new remote changes to the local repository by using the
command

git pull

In this case I already had all the remote changes, and that is why the message says ‘Already
up to date’, but the message will be different if you had missing changes. This is the ‘easy way’
to do it. The command git pull tries to fetch changes from the equivalent remote branch,
i.e., the one that has the same name on remote as it has on your local repository. This may
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not always work as expected so there is a way to always specify from which remote branch you
want to get these changes (and I highly recommend always using it explicitly):

git pull origin <name-of-remote-branch>

For example, imagine you asked someone for help on your own branch and they added some
new changes on your branch, that you do not have locally. Then, if your branch is called
my-branch, and you are already on your branch locally, you would want to use the command

git pull origin my-branch

Likewise, for the first example shown here (keeping the main branch updated), I would always
be explicit:

git pull origin main

10



3 Creating our own branch

After the pull, we are now safely up to date with the remote changes. Now it is time to learn
how to create our own ‘branch’, from which we will start working on new code. We use the
following command:

git checkout -b <name-of-branch>

The command git checkout <name-of-branch> is used to change from one branch to another
(so that you will now see the files and changes that are in that branch). Additionally, if we add
the -b option, it will create the branch with the given name if it does not already exist, which is
our case in this example. The branch name should be something like author/name-of-branch.
Thus, some common practices for naming your branches (and that we should follow) are:

• They do not contain caps (all lowercase)
• Words are separated with dashes (-)
• The name includes the author and some descriptive name separated by a slash (/)
• The descriptive name should ideally start with an action (a verb) in imperative style (fix,

create, test…).

If Ermenegildo wants to create some code for preprocessing bilateral trade data, an acceptable
branch name could be ermenegildo/preprocess-bilateral-trade-data.
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4 Adding changes to our branch

Now you are in your own branch and you can start working on your changes. While you
work on them, you should keep track of changes with git. We can add all changes using the
command

git add .

Here the dot means ‘this directory’, which essentially adds all new changes, i.e. all things inside
the directory. We can add just a specific file instead using the command

git add <relative-name-of-file>

After adding our changes, we must ‘commit’ them. This commit step is what actually saves
your changes in the git history. You do this with the command

git commit -m 'Some descriptive message for your changes'

A common practice for commit messages is to start them with a verb in infinitive (imperative
style), indicating an action that was performed, e.g., 'Create tests for bilateral trade
data preprocessing'.
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A common practice is to make small commits, that is, include just a few changes in each commit,
so that it is easier to keep track of your work’s history, instead of just having a single commit
when you are done with everything. Ultimately, the amount of commits is your decision, but
should not be just one commit per branch.
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5 Pushing our changes

After committing, we now have our changes in local git history, but we should probably also
add them to the remote GitHub repository. We do this using the command

git push origin <name-of-branch>

Now you should be able to see your changes in your own branch from GitHub itself, you just
need to select your own branch instead of the main one.

You should remember to push your changes regularly to the remote repository. Otherwise you
risk having a bunch of code features in your local computer that could be lost if something
happened to it. This is aligned with the previous suggestion of creating many smaller commits
as opposed to giant ones, so that you can also push them more frequently.
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6 Creating a pull request

Suppose you are done with your changes and you want to add these to the main branch. Mixing
one branch with another is known as ‘merging’. In this case we would like to merge our new
branch with the main branch. This can be done forcefully, but the common practice we will be
following is to create what is known as a ‘Pull request’ from our branch into the main one, and
we do this directly from GitHub, once we have pushed all of our changes.

Here you can see all the changes you made (that differ from the main branch) before clicking
again ‘Create pull request’. Then you will see the following, where you should add some title
and description to explain what you have done. You finally click ‘Create pull request’ again.
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Now the Pull Request (often abbreviated as PR) is created and the next step is to ask for
someone’s review.
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Ideally these changes would not be merged until someone else reviews your code. This person
might find things you have to change and request these changes before merging, so you would
have to keep working on your branch until they are satisfied. Then they would accept your
changes and you would be ready to merge your branch into the main one, and the process
would be done.

However, sometimes there is an additional step that must be passed before merging, which is
related to automatic code checks, e.g. check whether your code is well formatted and whether
it passes all tests successfully. If configured, these can run automatically when creating a Pull
Request. We will indeed work with them, but we will explain these automatic checks better in
the Automatic checks on Pull Requests section.

While working on your own branch, others may have merged their own branches into the
main branch and then your own branch would be outdated. When creating a Pull Request
yourself, you should make sure your branch is also up to date with everything already on the
main branch. Recall from the pulling remote changes section that we can do this with the
command

git pull origin main

Even if you are locally on your own branch and directly try to fetch changes from a different
remote one (in this case main), this works as expected, that is, it tries to merge all new changes
from the main branch into your own local one. This automatic merge works most of the times,
but sometimes you may find conflicts, because the program does not know how to combine
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everything neatly. If this happens, you must manually check which parts of the code should be
kept. In the next section we explain how to solve conflicts.
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7 Solving conflicts

As noted in the previous section, sometimes when you git pull from another branch or from
the same remote one (if you are missing some changes), you can find conflicts. A conflict looks
like this:

<<<<<<< HEAD
this is my content
that I just added
=======
this is some different conflicting content
from the branch I pulled from
>>>>>>> some_branch_name

So in a conflict, there are at least three lines the were added by git to separate the conflicting
parts. The conflict starts at the line <<<<<<< HEAD, and until we get to the ======= line,
the lines in between are the content we added. Then from this one until the end >>>>>>>
some_branch_name, the lines in between are the content that someone else added and we did
not have yet. Then solving a conflict essentially means removing these three lines added by git.
We have three options here. You will have to decide which one you want depending on the
situation:

• Keep only our content. Solving the conflict would involve removing all lines except:

this is my content
that I just added

• Keep only the other content. We remove everything except:

this is some different conflicting content
from the branch I pulled from

• Keep some (or all) content from both parts, or even adapt it adding other things. We
remove the three lines added by git and everything else we do not want to keep, leaving
something like a mix:
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this is my content
that I just added
this is some different conflicting content

If you have to find conflicts (I advise to do it manually), you could use some text finding tool
in your editor, and look for the text HEAD, as this always appears in the first line of a conflict.
After you solved all conflicts, you have to do the rest of the steps explained in previous sections,
involving git add and git commit, because a pull also counts as a code change, so you have to
make a commit from it. In case you are wondering, when you perform a pull without conflicts,
you are not creating a commit yourself but git does it for you, automatically. So whether you
solved the conflicts or git did it for you, there will always be a commit representing it.
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Part II

Create an R package
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This is the R package part.
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8 Project structure

It seems clear that even though we would work fine with bare R scripts that are run directly,
when working on a large project it makes sense to have some kind of file structure, to keep
everything organized. You can build your ad-hoc file structures, and you could probably come
up with something rather simple. Here, instead, we will focus on using the standard structure
of an R package. This is a standard everyone has to follow if they want their projects to turn
into packages which can be publicly downloaded by anyone from the CRAN repositories. Just
the same way you do, e.g., install.packages(tidyverse) to install all Tidyverse packages,
if you follow this standard R package structure, you can upload your package and one could do
install.packages(your_package) the same way.

Even if you do not want to upload a package, there are still advantages if you follow this
structure. This is the one we will follow, so the rest of this section will try to explain its
different parts, that will all become part of our workflow.

This is the whole structure of an R package:
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Luckily, there are a lot of files there that you do not need to know about, at least for now, so
we will try to explain the most important ones in the next sections.

There is a whole R packages book which I followed myself to setup the basics for our project.
It is very well written and available for free online, so if you are interested in knowing more
about R packages and their project structure, I recommend checking the book.
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9 Virtual environments with renv

We just mentioned we were going to use the R package structure, and it seems R package
developers do not use renv… Or do they? At least they do not seem to include renv related
files in their package repositories… Well, why should we use it then? While writing this guide
I was a bit confused myself about mixing both things, but my conclusion was that it just
does not hurt in any way, renv just makes things easier without apparent drawbacks (do tell
me if you know of any). When creating packages, you want to make sure they work on fresh
installations, i.e., computers that do not have anything unnecessary installed. The package
creation process as we will use it, does not need to know anything about renv, so we should be
fine. The packages use their own file called DESCRIPTION which includes information about the
other packages it needs as dependencies, as we will see later on. So we can just try to benefit
from using virtual environments.

OK, but what are virtual environments? This is a fancy term, but its practical meaning is
quite simple. First consider the following:

• If you are not using them, it means you just have a global R installation in your computer,
and whenever you install a package, it is installed globally.

• If you want to run someone’s code and they use a bunch of packages that you usually
do not, you would have to install all of them to be able to run their code, and these
would mix with all your other packages. If you want to uninstall them after that, you
would have to do a lot of manual work to make sure you know all of them (some package
dependencies could have also been installed, and you cannot be sure if they were only
used for these packages or also some other package that you already had).

• If you want to write some code that uses some packages, and you want another person
to run it, you should make a list of the packages used only in this project, because they
should not have to install any other packages you have from other projects but are not
necessary here. If you do not even make this ‘package list’, the other person should have
to go through your whole code or run it and install a new package every time the code
fails because of a missing one. Overall, this is a poor experience.

Virtual environments try to fix this. Essentially, they provide a ‘local’ installation of packages,
that are only visible inside your project, and do not get mixed at all with those from your
global R installation or from other individual projects. In practice, a virtual environment is
just a folder containing installed packages, isolated from the folder that contains your global R
installation. It is like having several different R installations, each one with their own packages
and versions.
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Chances are you follow this guide with an existing repository that is already using renv (then
you can skip the renv::init() step). If this were not the case, open an R prompt in the root
directory of your project and run inside the prompt:

renv::init()

It will probably ask to close and reopen a clean prompt. After that, every time we open an R
prompt inside our project, it will automatically use renv to work within a virtual environment.
If you use renv for the first time but on a project that already uses it, when you open the R
prompt in its root directory, the renv package will be installed automatically.

Now that we have renv, we can, for example, install a testing package with install.packages("testthat")
and this will not be a global installation, which means it will only work inside this project.
This is a way of isolating your project dependencies and making your projects reproducible, by
letting others know exactly which packages your code needs to run, and not add unnecessary
ones that you may have because of other projects, as we mentioned previously.

The ‘list’ of required packages for the project, along with their versions, which is used by renv
to manage the virtual environment, is in a file called renv.lock. After installing new packages,
this file is not updated automatically and we have to do it manually by running

renv::snapshot()

This will update the renv.lock file with all the packages renv finds are used in your code. If
for some reason you need to install a package not explicitly used in the code, this may fail to
recognize it. In that case, you should instead explicitly call renv::snapshot(type="all") to
force every package in your renv environment to be added to renv.lock. You should push
this file to the repository. If someone else wants to reproduce your code, then they may have
to run

renv::restore()

which will install any packages from renv.lock that they may still not have installed, but
again, only on a project level, not conflicting with their global R installation. If you use GitHub
with others, then you might also need to do this every time you pull remote changes and
someone else has included a new package, so that you are then up to date with them. In any
case, when opening the R shell, it will probably remind you that there are missing packages in
your virtual environment with a message:
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And this is basically all you need to start using a virtual environment, keeping in mind the
commands

• renv::snapshot(): add new required packages to renv.lock file
• renv::restore(): install packages from renv.lock that you do not have yet

I wrote this introduction to renv by reading their own package documentation. If you want to
learn more about it, you can read it yourself at their package website.

While this is not directly related to renv usage, I wanted to highlight here that in Windows
you may have errors trying to install some R packages. Most of the times this may be related
to missing operating system dependencies or commands. In Windows this should be easily
fixable by installing the version of Rtools that matches with your R version. After selecting
the version you can download it by clicking the first installer link. After installing Rtools, you
can try again to install the R packages you wanted.
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10 Writing code

10.0.1 Create your functions

Looking back at the package’s file structure, it is in the R/ directory where we will put all the
main code. The R files stored here must not contain any top-level code, that is, it must all be
inside functions. We can add more than one function in each file if they are somehow related,
but there must not be too many either. If a file becomes too large and it has several functions
inside, consider splitting it into shorter files.

Take the following code as an example, written by our colleague Justin (you do not have to
understand the code, you can keep reading). We save it in R/sources.R.

#' Create a new dataframe where each row has a year range into one where each
#' row is a single year, effectively 'expanding' the whole year range
#'
#' @param trade_sources A tibble dataframe
#' where each row contains the year range
#'
#' @returns A tibble dataframe where each row
#' corresponds to a single year for a given source
#'
#' @export
#'
#' @examples
#' trade_sources <- tibble::tibble(
#' Name = c("a", "b", "c"),
#' Trade = c("t1", "t2", "t3"),
#' Info_Format = c("year", "partial_series", "year"),
#' Timeline_Start = c(1, 1, 2),
#' Timeline_End = c(3, 4, 5),
#' Timeline_Freq = c(1, 1, 2),
#' `Imp/Exp` = "Imp",
#' SACO_link = NA,
#' )
#' expand_trade_sources(trade_sources)
expand_trade_sources <- function(trade_sources) {
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non_na_cols <- c("Trade", "Timeline_Start", "Timeline_End", "Timeline_Freq")
trade_sources |>

dplyr::filter(!.any_na_col(non_na_cols)) |>
.expand_trade_years() |>
dplyr::mutate(

Name = dplyr::if_else(
Info_Format == "year", paste(Name, Year, sep = "_"), Name

),
ImpExp = `Imp/Exp`,
In_Saco = as.integer(!is.na(SACO_link)),

)
}

.expand_trade_years <- function(trade_sources) {
trade_sources <- dplyr::mutate(trade_sources, No = dplyr::row_number())

trade_sources |>
dplyr::group_by(No) |>
tidyr::expand(Year = seq(Timeline_Start, Timeline_End, Timeline_Freq)) |>
dplyr::inner_join(trade_sources, by = "No")

}

.any_na_col <- function(cols_to_check) {
dplyr::if_any(dplyr::all_of(cols_to_check), is.na)

}

In this sample code there are some things to keep in mind:

• All the code is written inside functions, and there are three of them. The name of two of
them starts with a dot. This is a convention for private functions. Private functions are
just helpers that are used in other functions from the same file, they do not need to be
used from outside.

• The functions that are not private, are then called public, and those are the ones that we
want to ‘export’, in the sense that we want to allow for them to be used from outside
this file. In our sources.R example, the first function is public.

• The public function has a large commented section before it, each line starting with #'.
This is a special type of comment and it is considered documentation. Every public func-
tion must be documented in the same way (more on this special function documentation
in the next section). The private functions can be introduced by explanatory comments
if you consider it necessary, but they should be normal comments instead (starting with
just #, without the single quote).
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The most important take from here anyway is that these files should contain all the code inside
functions and nothing outside them.

10.0.2 Run your functions

This might seem like a naive question. Of course, we run the code as we always do! If we’re in
RStudio, we select code and click the Run button, right? Well, although you can technically
you that, it’s not recommended to use it when trying to run functions from your package.
Instead, there is a special function that directly loads all the functions from your package into
your environment, so that you can easily access them. The command is

devtools::load_all()

Once you start working on R packages, this should become a habit for you. Every time you
make some change in one of your functions, you’ll have to write devtools::load_all() in
your R session to have the latest version of the functions available. Then you can use them.

If something ever goes wrong and you have no idea what’s going on, the first thing you should
try is:

1. Clean your R session. There’s an option for that in RStudio in the form of a broom icon.
But you can achieve the same result by calling this from your R session:

rm(list = ls(all.names = TRUE))

2. Try loading everything again with devtools::load_all().
3. Try to do again whatever failed before.

Of course this will only fix your problems if they were produced because you mistakenly
loaded something manually instead of using devtools::load_all(). This is probably the
most important command you’ll use while working on an R package. Please remember that.
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11 Function documentation

The special commented section seen in the previous example will be used by a package called
roxygen2. We have to follow this exact syntax, so that this package can automatically build a
really neat documentation of our package for us. Let’s try to understand its basic structure.
For reference, these were the different parts:

• A small description of the function, nothing else.

#' Create a new dataframe where each row has a year range into one where each
#' row is a single year, effectively 'expanding' the whole year range

• A small description of each parameter the function receives. It should be like:

#' @param param_name_1 Description of param 1
#' @param param_name_2 Description of param 2
#' ...

As you see here I think it is OK to add line breaks in between, as long as each parameter starts
with @param.

#' @param trade_sources A tibble dataframe
#' where each row contains the year range

• A small description of the value the function returns. It should start with @returns.

#' @returns A tibble dataframe where each row
#' corresponds to a single year for a given source

• A simple line containing @export to indicate the function can be used in the package,
i.e., it is public.

#' @export

• A ‘code’ section of examples to illustrate the function’s behavior. It must start with
@examples, and after that you can write usual R code. When this is processed, it
automatically runs the code and adds some lines with its output in the documentation.
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#' @examples
#' trade_sources <- tibble::tibble(
#' Name = c("a", "b", "c"),
#' Trade = c("t1", "t2", "t3"),
#' Info_Format = c("year", "partial_series", "year"),
#' Timeline_Start = c(1, 1, 2),
#' Timeline_End = c(3, 4, 5),
#' Timeline_Freq = c(1, 1, 2),
#' `Imp/Exp` = "Imp",
#' SACO_link = NA,
#' )
#' expand_trade_sources(trade_sources)

These options are enough to get us started with a nice documentation. In the Writing articles
section we will learn how to generate and see this documentation. In this example, it would
look something like this (note the autogenerated example code output):
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12 Package data

Some of the data we have to work with might be very large. If the final datasets we want to
produce are too large, we can’t directly include them in the package because there are size
limits and recommendations. In that case, we will have to export them as functions. In this
way, the package itself won’t contain the output dataset, but the user will have to generate it
through running a function, so it will be stored in their own computer. An example of this is
our function get_wide_cbs(). Unless we generate the dataset ourselves in the function, we
will also probably be using a very large input dataset which we just process somehow. For
reading large datasets, see the relevant Reading large files section.

From now on, in this section we assume that you have some small datasets (maybe up to a
couple of megabytes) as inputs. We will go through both public and private ones. The public
ones are those that you want to export to users of your package, and the private ones are only
intended for being used in your own code.

Let’s start with the exported datasets. The whole aim of this is to allow users (or even our
own code) to access them easily by writing my_pkg::my_dataset. In order to achieve this, you
must follow these steps:

1. Create a file in data-raw/my_dataset.R. Scripts inside the data-raw folder aren’t in-
cluded as part of the package. They will just be helpers for us to generate the actual
data. Inside this file we do some processing and, assuming we have a variable called
my_dataset, we end the script by calling usethis::use_data(my_dataset). This will
automatically create an .rda file in data/my_dataset.rda. We have to manually run
this script. After that, we can now refer to the dataset as my_pkg::my_dataset.

You can directly create your data in the script data-raw/my_dataset.R, or you can
make it rather short by just importing some data from another raw file. In this
case, I recommend having the raw file as a CSV in the inst/extdata folder, say,
inst/extdata/my_raw_dataset.csv. This is for accessibility, so that everyone can
see where this data comes from regardless of whether they know how to read an .rda file
or not. A data-raw/my_dataset.R script could then look like:

my_dataset <- here::here("inst", "extdata", "my_raw_dataset.csv") |>
readr::read_csv()

usethis::use_data(my_raw_dataset, overwrite = TRUE)
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Every time you introduce some change in the raw CSV file, you would have to run this script
again. The overwrite = TRUE is exactly for this purpose, so that the my_dataset.rda file is
overwritten with the updated data.

2. Document your dataset. In the previous section we learned how to document functions.
Datasets aren’t functions, but they’re documented very similarly. We start by creating a
file R/my_dataset.R. Note that the name matches that of data-raw/my_dataset.R. It
doesn’t need to match that of the variable used with usethis::use_data(), but they
should match each other. You can define more than one dataset in the same file if you
think they’re related, so then you can also use a more general name for the file. This is
how you would document your dataset, also using roxygen2 comments:

#' Title of my dataset
#'
#' My description of my dataset
#'
#' @format
#' What my dataset is. I would ideally make it a tibble and explain all
#' columns. My dataset contains the following columns:
#' - `column_1`: My explanation of column 1.
#' - `column_2`: My explanation of column 2.
#' - `column_3`: My explanation of column 3.
#'
#' @source Where my data comes from. Maybe an external link if you have one.
"my_dataset"

As you can see, we use roxygen2 style comments right before a line containing a
character vector with the name of our dataset, in this case "my_dataset". Now
your dataset will be correctly documented after doing devtools::document() and
pkgdown::build_site()/pkgdown::build_reference().

Now we should talk about internal data. This is data that only the developers of the package
themselves use throughout the code. This could be either actual tibble datasets or just bare
constants. Any value that doesn’t change and you would like to share throughout the whole
package code applies for this. Creating internal data is quite similar to exported data:

1. Create a file data-raw/constants.R if it doesn’t already exist. For internal data, all of
them should be defined in this same file. The file could look like this:

my_constant_number <- 0.65
my_constant_name <- "name"
my_constant_tibble <- tibble::tribble(

~col_1, ~col_2,
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1, 2,
3, 4

)

usethis::use_data(
my_constant_number,
my_constant_name,
my_constant_tibble,
internal = TRUE,
overwrite = TRUE

)

As you can see, you can pass more than one variable to usethis::use_data(). We should
include all our constants in the same call to this function. In addition, it must also include the
internal = TRUE option to identify this as internal data.

2. Manually run the previous file. This will create a single file in R/sysdata.rda, which
contains all your internal data. You can now refer to these data the same way as for
exported data, e.g., my_pkg::my_constant_tibble or my_pkg::my_constant_number,
but these will only be available through the package’s code, and won’t be exported to
the package users. Again, any time you want to add new internal data or modify the
existing entries, you will have to manually run that script again.

Whether some data is worth being exported as part of the package or just used as internal, this
is your decision, but now you know how to implement both. This section was heavily inspired
by the Data chapter in the R Packages book, which I recommend reading if you want to dive
deeper.
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13 Writing tests

So we just wrote a function, we are done with it, we now move to another function… No. You
probably thought that we should check somehow that this function is indeed correct and it
does what you expect. Right now it would be easy to just load the function in an R prompt
and try some examples on it, but what if the next month someone has to make a change in
this code? They would have to do this manual testing again to make sure they did not break
any functionality. What if they need to change dozens of functions? How much time will they
spend on testing all of them?

I think you can understand that this is really time consuming and that there is a better way.
Tests can be automatized. We can write some tests whenever we create a new function, that
together prove the function does what we expect, and if later on we add some changes to the
function, we already have a test that can be run automatically to see if the function is still
correct. Of course, this is not completely accurate. Maybe when we changed the function,
some of its functionality was also changed, so the test is not accurate anymore and has to be
tweaked as well, to represent what we really want. But this is still much less work than always
testing the function manually in an R prompt, and eventually you just get used to it.

The package that is used to write tests and is well integrated into the R package creation
workflow is testthat. We will be using it to write our automated tests. Again, looking at
the structure of an R package, the tests go into (surprise!) the directory tests/. In this
directory there is a file called testthat.R that setups testthat and should not be changed,
and the actual tests that we write will go into the tests/testthat/ subdirectory. The
convention is to name the test files the same way as the R files but with a test- prefix.
In our case, for example, if we have an R file in R/sources.R, then our test file should be
tests/testthat/test-sources.R. Let’s see how one of our tests could look like:

library("testthat")

test_that("trade source data is expanded from year range to single year rows", {
trade_sources <- tibble::tibble(

Name = c("a", "b", "c", "d", "e"),
Trade = c("t1", "t2", "t3", NA, "t5"),
Info_Format = c("year", "partial_series", "year", "year", "year"),
Timeline_Start = c(1, 1, 2, 1, 3),
Timeline_End = c(3, 4, 5, 1, 2),
Timeline_Freq = c(1, 1, 2, 1, NA),
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`Imp/Exp` = "Imp",
SACO_link = NA,

)
expected <- tibble::tibble(

Name = c("a_1", "a_2", "a_3", "b", "b", "b", "b", "c_2", "c_4"),
Trade = c("t1", "t1", "t1", "t2", "t2", "t2", "t2", "t3", "t3"),
Info_Format = c(

"year", "year", "year", "partial_series", "partial_series",
"partial_series", "partial_series", "year", "year"

),
Year = c(1, 2, 3, 1, 2, 3, 4, 2, 4),

)

actual <-
trade_sources |>
expand_trade_sources() |>
dplyr::ungroup()

expect_equal(
dplyr::select(actual, Name, Trade, Info_Format, Year),
expected

)
})

Again, you do not have to understand the whole code. Just note that we use two functions
from the testthat package:

• testthat::test_that: this is the main function used to delimit what a test is. It
receives a text description about what the test is checking, and a body containing all the
code of the test itself.

• testthat::expect_equal: this is just one of the many utilities testthat brings to
actually assert things in the test’s code. It is probably the most general assert, and it just
checks if everything is identical in both arguments, including internal object metadata,
not just “appearance” (what you may see when printing an object). You can look for
more testing utility functions in their documentation.

So now we have a test. How do we execute it? It is not recommended to run the test as usual
R code (e.g. run the file as a script). Instead, there are some functions provided by testthat
for running tests. Here are some of them:

• testthat::auto_test_package(): This one will run all the tests in the package the first
time, and after that it will not stop running, but wait for code changes. This means that
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whenever you ‘save’ a test file, it only reruns all the tests in that file. This is extremely
useful when you are actively writing some tests, so that you can get fast feedback.

• testthat::test_file(): This one receives as argument the path to a test file,
and it only runs the tests inside it. For example, we could run in our case
testthat::test_file("tests/testthat/test-sources.R").

• testthat::test_dir(): In this case, this could be different to running all the tests
if we had e.g. some subdirectories in the tests/testthat one. If there was a subdi-
rectory tests/testthat/sources with many test files related to sources, we could run
testthat::test_dir("tests/testthat/sources") and all test files inside this direc-
tory would be executed.

• testthat::test_package(): This is the most general one. It just runs all the tests in
the project.

All of these can be useful to run tests while you are actively working on them. You are supposed
to make all your tests pass, and as we will see in the next section, there are some more checks
a package must pass to be valid (so that it can be publicly uploaded), but tests are definitely
one of them.
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14 R CMD Check

There is a standard tool that contains several steps (‘checks’) which every project that wants to
be a package uploaded to CRAN repositories must pass. As part of our code workflow, you are
also responsible to make this check pass, as we will also see in the Automatic checks on Pull
Requests section. This check is known as ‘R CMD check’, and it is actually very easy to run:

devtools::check()

The whole output of this call is rather long, since it lists all the different checks it makes, but
at the end, if there are no issues, this is the output you should see:

OK, but if you just followed the steps in this guide and included our example code from the
Writing code and Writing tests sections, the above check should not have ended successfully
with 0 errors, and you probably see (among the really large output), some error like this:
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The problem here is that before performing the check on your package, it must build it. And
for that, it must know which other packages it has as dependencies. Again, if you just followed
everything from here, we never got to do that, so your built package just does not include any
other packages. To fix this, we must have a quick look at the DESCRIPTION file.

Package: whep
Title: What the Package Does (One Line, Title Case)
Version: 0.0.0.9000
Authors@R:

person("First", "Last", , "first.last@example.com", role = c("aut", "cre"))
Description: What the package does (one paragraph).
License: MIT + file LICENSE
Imports:

dplyr,
tidyr

Encoding: UTF-8
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.3.2

41



Suggests:
knitr,
rmarkdown,
testthat (>= 3.0.0),
tibble,
ggplot2,
here,
googlesheets4

Config/testthat/edition: 3
VignetteBuilder: knitr
URL: https://eduaguilera.github.io/whep/

In the above file, the Imports section is where we should make sure we have all dependencies for
code which was saved specifically in the R/ directory. On the other hand, dependencies for code
written in other places, such as tests/ or vignettes/ (we will see this one in the following
Writing articles section), should be included in the Suggests section of the DESCRIPTION file.
Together these two fields tell everyone which dependencies our package needs to work correctly.
After adding these, you could run again devtools::check() and confirm that it does not fail
anymore (at least no errors).

We will not go into detail as to which checks are being performed. We will all slowly learn
about them whenever they show up as real issues in our code when running the check tool.
Just keep in mind that one of the important points is that all the tests you write are also
executed here, and the ‘R CMD check’ also fails if one of your tests fail. If you really want to
know more about the checks, you can read, e.g., this detailed list.
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15 Writing articles

If you ever got to check some popular R package website (e.g. dplyr), you may know there is a
section called Articles at the top, and if you open one of them, you see what indeed looks like
an article, mixing natural text and code rendering. This is ideal if you want to make guides
about your package, or some kind of reports in general. As you can probably guess, this guide
that you are reading was built the same way. Luckily this is already very well integrated with
the R packages workflow, and we will learn how to make our own articles here easily.

Everything that we want to appear in this Articles section of the site, should be included in
the vignettes/ directory of the package. And inside this directory, each file that ends with a
.Rmd extension will be considered one article. The extension name stands for ‘R Markdown’,
which is a mix of R code and Markdown text. If you do not know about Markdown you
can start with, e.g., this intro. Following our previous example, we can create a file called
trade-sources-coverage.Rmd with the following code 1 (again, thanks to Justin):

---
title: "Trade sources year coverage"
output: rmarkdown::html_vignette
vignette: >

%\VignetteIndexEntry{Trade sources year coverage}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}

---

```_{r, include = FALSE}
knitr::opts_chunk$set(

collapse = TRUE,
comment = "#>"

)
```

```_{r setup}

1If you copy it, please remove the _ from starting code block lines, e.g., change ```_{r, ...} to
```{r, ...}. I cannot render R Markdown code properly inside an R Markdown file itself in this guide,
because it tries to execute the code block anyway, and this is a workaround so that this guide renders properly.
Do tell me if you know of a correct way to handle this.
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library(whep)
key_path <- here::here(Sys.getenv("GOOGLESHEETS_AUTH_FILE"))
googlesheets4::gs4_auth(path = key_path)
```

First we read the trade sources sheet and build a dataframe where each row accounts for one year.
```_{r}
# Step 1: Authentication
sheet_url <- "1UdwgS87x5OsLjNuKaY3JA01GoI5nwsenz62JXCeq0GQ"

# PART 1: trade_sources FOR TRADE

# Step 2: Rest of Program
expanded_trade_sources <-

sheet_url |>
googlesheets4::read_sheet(sheet = "Final_Sources_Trade") |>
expand_trade_sources()

```

Now we build some plots.

Plot showing years covered by `expanded_trade_sources`:
```_{r, fig.alt="Plot showing years covered by expanded_trade_sources"}
ggplot2::ggplot(

expanded_trade_sources,
ggplot2::aes(y = Trade, x = Year, fill = "lightblue")

) +
ggplot2::geom_tile(alpha = .8) +
ggplot2::theme_dark() +
ggplot2::labs(title = "Source Availability by Country") +
ggplot2::scale_fill_identity() +
ggplot2::facet_wrap(~Reporter, ncol = 1)

```

The first part of this code, namely the following

---
title: "Trade sources year coverage"
output: rmarkdown::html_vignette
vignette: >

%\VignetteIndexEntry{Trade sources year coverage}
%\VignetteEngine{knitr::rmarkdown}
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%\VignetteEncoding{UTF-8}
---

```_{r, include = FALSE}
knitr::opts_chunk$set(

collapse = TRUE,
comment = "#>"

)
```

is metadata and should always be present (just change the article’s title). You see that just as
in Markdown, we can write R code chunks inside triple backticks, but the difference here is
that this code will be executed, and by default we will also be able to see its output in the
rendered article.

The next chunk (with the "r setup" option) is used for some initialization code that you
may need throughout the rest of the article. At the time of writing I do not really know the
implications of writing the "r setup" option or writing this code in a normal R code chunk
(without the option), but it is at least good practice. Note that the package being loaded is
your own package (called whep in our case).

```_{r setup}
library(whep)
key_path <- here::here(Sys.getenv("GOOGLESHEETS_AUTH_FILE"))
googlesheets4::gs4_auth(path = key_path)
```

The rest of the code provided is just some usual Markdown text intertwined with usual R code
chunks. In the special case of code chunks with plots, we will get to see the actual plot in the
rendered article, and the fig.alt option is necessary in order not to get an R CMD check
warning, and will only be used as text which explains the rendered image for people using
screen readers or in the case it cannot be displayed correctly in a browser.

Now that we have our R Markdown article, we would like to visualize it. There are at least
two useful R commands for this. The first one creates the whole documentation website locally
in our computers, and it automatically opens your browser on the site. This is simply:

pkgdown::build_site()

We should now be able to see our article in the ‘Articles’ section. It should look something
like the one you can see directly on this site at Trades sources coverage (with some additional
plots).
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After running this command once, there is no need to rerun it every time we want to see
changes, since it takes a bit longer to run. We can instead use a simpler one

pkgdown::build_articles()

which checks for code changes in articles and only reruns those that have changed. I am not
completely convinced they are equivalent, since it seems at some point one failed and one
worked for me, but if you are not doing something strange (like me building this guide and
writing R Markdown inside R Markdown) it should probably work the same.

The pkgdown::build_articles() one could still fail with some error indicating that the pack-
age cannot be loaded. It most likely refers to your own package. Since you use code from your
own package inside the R markdown, this package itself must also be installed. When running
pkgdown::build_site(), I think the package is installed but only in a temporary directory for
that execution, so maybe it does not work anymore when calling pkgdown::build_articles()
after that. If this is your case, you may want to try installing your own package first via
devtools::install(). Note that this assumes you do not change your package code (the one
in R/ directory) while actively working on articles. If you do, you would have to reinstall your
own package every time you change something in the R/ directory.

As mentioned in a previous section, also remember to include all package dependencies your
article code uses in the Suggests part of the DESCRIPTION file, so that you do not get errors
of packages not being found when building the articles or running R CMD check.

This way we can render our articles by default in HTML, which is what browsers use. Having
your own site is perfect because you can keep it up to date, but in case you need it, you should
also be able to export an article as PDF. For this to work, you first need a LaTeX distribution
installed. If you are on Windows, you can try MiKTeX (maybe start from here). Remember to
choose “Yes” when asked for “missing packages installation on the fly”, otherwise our PDF
generation from R might fail. Once we have a LaTeX distribution installed, we can build a
PDF from our article with just a single command:

rmarkdown::render("vignettes/my-vignette.Rmd", output_format = "pdf_document")

The output PDF (probably as expected) does not look exactly like the one from the site, but it
has its own style (LaTeX’s style). There are also other valid formats, you can look them up if
you are curious, but I thought the PDF output format would be the most useful one besides
the HTML for website generation.
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16 Environment variables and secrets

When running code, you can sometimes customize some behavior by specifying the value of
some variable to your needs. For example, maybe there is an option whose value is a number
from 1 to 5, indicating the level of debugging (the amount of output you want to see in the
console, so as to understand the code’s execution). A possible way of introducing this would be
with what is known as an ‘environment variable’, which is just a value stored with a name in
the ‘environment’ where your code runs (not an R variable, it is more related to the operating
system). These should be loaded before the code starts running, and our package workflow
allows us to do this quite easily, by creating a top-level file called .Renviron, which can include
one variable per line, like this:

DEBUG_LEVEL=1
GOOGLESHEETS_AUTH_FILE=inst/google_cloud_key.json

It can be accessed from R code by using

Sys.getenv("NAME_OF_VARIABLE")

You can also use environment variables for constants, or whatever you feel that could be used
in several places. This file will be uploaded to the repository, so it is important that it does
not contain any sensitive information (also known as ‘secrets’). I also introduced this section
because in the example code for the Writing articles section, there is the line:

key_path <- here::here(Sys.getenv("GOOGLESHEETS_AUTH_FILE"))

In that example, an Excel sheet must be read. When using the googlesheets4 package, it can
automatically open a browser interactively and ask for your Google account credentials, but
when running check tools, we want everything to work from beginning to end without human
intervention. This is achievable by providing a secret token 1.

Since we must not include secret information in .Renviron, the workaround is to instead add
just the secret file path as an environment variable and then read from it, so the .Renviron is

1For educational purposes I won’t change anything from this explanation in the guide. However, recently I
found out that the token is not needed when you’re reading public files. For this to work automatically we
only have to call googlesheets4::gs4_deauth() before reading the public file.
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uploaded to GitHub but the secret file, which according to our environment variable should be
found in inst/google_cloud_key.json, is not uploaded. Instead, the file should be uploaded
to another private storage service, so that only you have access to it.

In examples like this one, ideally every developer would create and use their own token. The
specific case of the token in this example is out of the scope of this guide, but if you are
interested you could probably start from this gargle package guide. Also, the here package
was used above for easy file path referencing from the root directory of a project, so that paths
are not hard-coded, and you can read more in their package site.
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17 R code style and formatting

There are some conventions and good practices for how to write neat code in R. The most
followed style guide is the Tidyverse style guide. You can read it or just skim through it to
get a grasp of their conventions. The key is that most of them can be checked automatically.
There are tools which conform to these standards and let you apply the necessary changes
to the code by just clicking one button. Analogously, there are also ways to check whether a
code is correctly following a style or not, without explicitly changing it. In the context of the
Tidyverse style guide, these two points directly match with two R packages:

• styler: it applies the Tidyverse style guide to a specific code, be it a chunk, a file or an
entire project. For example, we could apply the style to the whole package by simply
using the command:
styler::style_pkg()

Most code editors incorporate some way of doing this. Since you are most likely using
RStudio, you can do it by finding the styler options in the ‘addins’ drop-down:

[1] "this is code change"
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When using renv, it seems RStudio only shows in the ‘addins’ drop-down the options
from packages included in renv, so keep that in mind in case you want it in a different
project, that is, if styler does not show up there, it means you do not have it installed
in the current renv environment.

An important thing to keep in mind is that the Tidyverse style guide states lines should
have at most 80 characters, but the styler package cannot by itself try to separate a
really long single line into several lines to match the 80 character limit. You must fix
this anyway, and the usual way for the styler to work is to first manually split some
of the code into two lines, and then run the styler again, so it can now split the rest
accordingly. For example, you have:
call_my_incredibly_long_function(my_first_long_argument, my_second_long_argument, my_third_long_argument)

In this case, if you use styler it may not change anything and still leave this code in a
single line, but you can help it a bit by sending the arguments to the next line, like this:
call_my_incredibly_long_function(

my_first_long_argument, my_second_long_argument, my_third_long_argument)

This does not conform to the standard yet, but now trying to use styler again, it should
be able to understand what is going on and split the code accordingly. Depending on the
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length of the line, it may leave it like this (note the closing parenthesis goes in its own
line):
call_my_incredibly_long_function(

my_first_long_argument, my_second_long_argument, my_third_long_argument
)

Or if the line was even longer, it would split each argument into its own line:
call_my_incredibly_long_function(

my_first_long_argument,
my_second_long_argument,
my_third_long_argument,
my_fourth_long_argument

)

Any of those should work now, because they successfully follow the 80 character per
line limit. If you do not follow the limit, you would fail the lintr check (see next point
below).

• lintr: it checks whether the given code/file/project follows the Tidyverse style guide,
without making any actual changes. You are responsible for making sure this check passes
(probably using styler as explained above), since it will also be automatically checked
on your Pull Requests (see the next section on this guide). The check we will use is:
lintr::lint_package(

linters = lintr::linters_with_defaults(object_usage_linter = NULL)
)

The default call would be as easy as lintr::lint_package(). I will not go into detail
about the specific option added here, but it is there to ignore warnings about unde-
clared global variables, which are false positives when using dplyr column names. For
convenience, if you are following our example repository, you could find this call in
inst/scripts/check_lint.R, so if you want to check everything you would just have
to run this script.

In the screenshot above you can see there are also options for lintr checks from Rstu-
dio’s ‘addins’, but by default they perform the lintr::lint_package() call without
any options. Remember we added one option to our check, so you should either
find out how to change the default behavior or just run the script we included in
inst/scripts/check_lint.R.

Again, as you can see in the screenshot, there are more things you can do directly from RStudio
(like running tests or building documentation). In this guide I tried to provide a code editor
agnostic approach for everything. Since I do not use RStudio myself, I am not particularly
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familiar with its functionalities, so if you think they may be helpful to you, you can check them
yourself.
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18 Reading large files

Many packages don’t work with data per se. Others need data, but their datasets are small
enough to be directly included in the package (and thus the code repository). GitHub has a
limit on file size of 100 MiB, but even adding such files will make working with the repository
noticeably slow. My recommendation for us is to consider a file large if it has more than a
couple of megabytes. Assuming our package needs to work with large files, we need to find
a workaround that is not storing them in GitHub. After thinking about this for a while, I
considered using the pins package. I encourage you to read through that Get started guide,
since I won’t explain too much about this package itself, but rather how we implement it in
our workflow.

A pins board is like a repository but for files. You can even store a version history of them.
Here we assume that someone already created a board for you. If you just want to use a file
someone else already added, you don’t need any of the following. See the documentation for
whep_read_file(). However, if you need a new file that is still not uploaded, or a new version
of an existing one, you’ll need to do these steps:

1. Prepare a local version of your data. I created a script helper for us, which can be found
in the whep repository. You have to fill your own local data path and a name for the
data, run the script and follow the instructions. For example, I could set the following

prepare_for_upload(
"~/Downloads/Processing_coefs.csv",
"processing_coefs"

)
#> Creating new version '20250716T102305Z-f8189'
#> � 1. Manually upload the folder /tmp/RtmpHFHNUO/pins-1f3c39c418e0/processi
#> ng_coefs/20250716T102305Z-f8189 into your board. Folder path copied to you
#> r clipboard.
#> � 2. Add the corresponding line
#> - processing_coefs/20250716T102305Z-f8189/
#> in _pins.yaml at the end of the 'processing_coefs:' section
#> � 3. If you want the package to use this version, add a new row to whep_in
#> puts.csv if it's a new file or update the version in the existing row. The
#> version is 20250716T102305Z-f8189.
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2. A temporary local folder is created whose name is the data version. You must upload
this folder inside the one with the data’s name in the public board, assuming you have
write access.

Figure 18.1: New version uploaded

3. You must add one line to the _pins.yaml file in the root folder of the board, like it’s
specified in the instructions. This is an internal file that the pins package uses to keep
track of files and versions.

Figure 18.2: Update _pins.yaml

4. To use the version in the next package release, you must also update the version inside
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the whep_inputs.csv file:

alias,board_url,version
...
processing_coefs,https://some/url/to/_pins.yaml,20250716T102305Z-f8189
...

And now you’re done. You added a new file or a new version, and you can now access it from
the code by using the whep_read_file() function.

If you’re wondering why there are manual steps in this process and the script doesn’t automate
everything, it’s because our storage service is hosted by a Nextcloud server, and the easiest
way to interact with it from outside is having a synced version of the whole storage locally. I
thought some people might not be able to afford that, and since we don’t have to upload new
data files often, I decided a few manual steps wouldn’t hurt that much.
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19 Automatic checks on Pull Requests

By this point we assume you are already done with all your new code, you documented and
tested it, or perhaps you just created some report in the form of an article. As we have seen in
the Git intro, it is now time to create a Pull Request so that someone else reviews what you
have done. But when you create the Pull Request, our workflow is designed so that two checks
are run automatically on GitHub, each time you push your changes to a branch which has an
open Pull Request:

• First, the R CMD check is performed. We have seen in a previous section how you can
run it locally, so you should have made sure it outputs no errors. Otherwise, you will see
this step failing.

• Then, a linting check is performed. We have also seen how to autoformat your code, so
that it follows the R code styling standards, and how to make sure that it is indeed well
formatted. Otherwise, you will see this step failing.

If any of the steps above fail, you will see something like this in your PR page:

Otherwise, if both checks succeeded, you will see something like:

Overall, you should be able to see this at the bottom of the PR:
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In case you are wondering, both checks we mentioned before are actually done in a single
GitHub automatic step (these steps are called ‘GitHub actions’), so it should say ‘1 successful
check’ instead of ‘2 successful checks’. However, there is an additional GitHub action there,
which essentially just updates the documentation site (only when the PR is actually merged
into the main branch). This is not relevant to you as a developer but it makes the overall
workflow easier, since the project documentation is automatically updated without any more
human intervention. If you want to know more about this automatic site update you can check
this section from the R Packages book.

Recall that for a PR to be accepted and merged into the main branch, it must also be reviewed
by another developer. A good practice would be to make sure the GitHub checks pass before
even asking for someone’s reviewing, because if any check failed you most likely need to add
more code changes to fix them, so some of the code the reviewer could have checked before
could become obsolete, and they would have to read it again, so we better avoid that.
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